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Bifurcations and chaos in a parametrically damped two-well Duffing oscillator
subjected to symmetric periodic pulses
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We study a parametrically damped two-well Duffing oscillator, subjected to a periodic string of symmetric
pulses. The order-chaos threshold when altering solely the width of the pulses is investigated theoretically
through Melnikov analysis. We show analytically and numerically that most of the results appear independent
of the particular wave form of the pulses provided that the transmitted impulse is the same. By using this
property, the stability boundaries of the stationary solutions are determined to first approximation by means of
an elliptic harmonic balance method. Finally, the bifurcation behavior at the stability boundaries is determined
numerically.@S1063-651X~99!17105-8#
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I. INTRODUCTION

In spite of the complete acceptance of the nonlinear
ture of real-world dynamical phenomena, it is still only pa
tially taken into account in the mathematical models, wh
aim to describe even the simplest of such phenomena.
torically, nonlinearity was first incorporated into low
dimensional dynamical equations in the form of nonline
potential and dissipative terms. However, for temporal ex
tations, harmonic functions have been overwhelmingly e
ployed to model them up to now, even though such functi
represent solutions oflinear systems. It has recently bee
pointed out that it would be more general and appropriate
model temporal excitations by using periodic functions t
are solutions ofnonlinear equations@1#. In the context of
second-order differential systems, such as the pendulum
polynomial oscillators@2#, the Jacobian elliptic functions
~JEF! @3# appear to be the natural candidates fulfilling t
requirement of nonlinearity. In comparison with the trigon
metric excitations, the JEF’s enlarge the parameter spac
the system with the elliptic parameterm, that controls the
wave formof the excitation. In physical terms this mea
that, having fixed the period,m is responsible for the tempo
ral rate at which energy is transferred from the excitat
mechanism to the system. This idea has led to the dem
stration of the existence of new generic routes
order↔chaos by changing only the shape of a nonlinear
riodic excitation@1#. In this regard, it is a general unresolve
problem to characterize the physical conditions under wh
the aforementioned routes will be independent of thespecific
shapeof the excitation, leaving fixed the remaining param
eters.

In this present paper we consider some aspects of
broad question in the context of parametrically damped n
linear oscillators@4–8#. Specifically, we consider the para
metrically damped two-well Duffing equation,

d2x

dt2
1h@11Fp~ t;T!#

dx

dt
2x1x350, ~1!
PRE 591063-651X/99/59~6!/6558~11!/$15.00
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whereh and F are the normalized damping coefficient an
the excitation amplitude, respectively, and time is regard
as dimensionless. The functionp(t;T) is a generic symmet-
ric pulse of periodT and unit amplitude. We first take
p(t;T)[cn(vt;m), i.e., the JEF of parameterm. When m
50, then cn(vt;m50)5cos(vt), i.e., one recovers the pre
viously studied case of harmonic excitation@8#. To investi-
gate the structural stability of the system~1! when only the
excitation wave form is varied, we assume that the excitat
period T is a frequency-independent parameter, makingv
5v(m)[4K(m)/T with K(m) the complete elliptic integra
of the first kind. The parameter space of system~1! is then
four-dimensional because of the addition of the parametem
to the three-dimensional parameter space (h,F,T) of the re-
spective harmonic counterpart. Since cn(vt;m) represents a
periodic string of symmetric pulses, whose effective wid
decreases asm increases fromm50, in the limiting value
m51 the string vanishes except on a set of instants that
Lebesgue measure zero, i.e., one recovers the autonom
counterpart of Eq.~1!. Figure 1~a! shows three plots of the
function cn@4K(m)t/T;m# for different m values. Secondly,
we takep(t;T) to be a rectangular-pulse function:

s~ t;a,T!

5H 1,te@0,a/2#ø@T2a/2,T#
21,te@T/22a/2,T/21a/2#

0 otherwise,
J in each periodT,

~2!

wherea (a,T/2) is the parameter controlling the width o
the pulses. The parametersa andm have analogous roles in
the two types of pulses. Now, the question is: What wo
the relationship~s! betweena andm ~if any! be in order for
the dynamics arising from the system~1!, solely under
changes in the pulse shape, to be the same for both kind
pulse? In view of the particular form of Eq.~1!, a plausible
6558 ©1999 The American Physical Society
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PRE 59 6559BIFURCATIONS AND CHAOS IN A PARAMETRICALLY . . .
physical condition to derive such a relationship would be
require that the two pulse functions yield the same impu
in the following sense:

E
0

T

ucn~4Kt/T;m!udt5E
0

T

us~ t;a,T!udt, ~3!

i.e., the proposed relationship reads

a5a~m,T![
T

2K~m!Am
arccos~A12m!, ~4!

with the limiting values

a~m50,T!5
T

p
, ~5!

a~m51,T!50.

Figure 1~b! shows three plots of the driving pulse
s@ t;a(m,T),T# @cf. Eqs.~2! and ~4!# for the samem values
as in Fig. 1~a!. Of course, one cannot expect that conditi
~4! be uniformly valid for all the period. Indeed, note th
Eq. ~1! can be put into the form,

FIG. 1. ~a! Pulse function cn@4K(m)t/T;m# for T5const and
m50 ~dotted line!, m50.999 ~dashed line!, and m51 – 10215

~solid line!. ~b! Pulse functions(t;a,T) with a5a(m,T), @cf.
Eqs. ~2! and ~4!, respectively#, for T5const andm50 ~thin solid
line!, m50.999 ~dashed line!, and m51 – 10215 ~thick solid li-
ne!. t is a dimensionless variable.
o
e

dE

dt
52h ẋ2~ t !@11Fp~ t;T!#, ~6!

where E(t)[ 1
2 ẋ2(t)1U@x(t)# @U(x)[2 1

2 x21 1
4 x4# is the

energy function. Integration of Eq.~6! over any interval
@nT,nT1T/4#, n50,1,2,..., yields

E~nT1T/4!2E~nT!52hE
nT

nT1T/4

ẋ2~ t !@11Fp~ t;T!#dt.

~7!

Now, given thatall solutions of Eq.~1! are bounded, the
application of the first mean value theorem@14# to the re-
maining integral in Eq.~7! gives

E~nT1T/4!2E~nT!52h ẋ2~ t* !

3FT

4
1FE

nT

nT1T/4

p~ t;T!dtG ,
~8!

wheret* e@nT,nT1T/4#. It is clear that, in general,t* will
depend on bothn and p(t;T). Since we are interested i
asymptotic solutions, consider Eq.~8! for sufficiently large
values ofn, such that the system is reaching the steady s
that corresponds to the given initial condition. Assumi
condition~3! holds, one sees that the variation of the ene
function, after a quarter period, does not depend on the
cific shape of p(t;T) but only on ẋ(t* ). Although for
symmetric-pulse functionsp(t;T) with different wave forms
the associated values ofẋ(t* ) will not, in general, be the
same for large periods (T@1), it would be reasonable to
expect the difference to diminish asT→0. Thus, the respec
tive dynamics arising from Eq.~1! should be very similar for
sufficiently small periods, provided that the remaining p
rameters and the initial condition are held constant.

The organization of the paper is as follows. In Sec. II w
study theoretically the onset of chaos~homoclinic bifurca-
tion! in system~1! through Melnikov analysis~MA ! by con-
sidering both types of pulse function. The features of
threshold functions in parameter space are discussed,
special emphasis on the shape parameter dependence.
tion III gives a preliminary estimate of the stability boun
aries for the stationary solutions (x561, ẋ50) in parameter
space (h,F,T,m). The theoretical approach is based on tw
assumptions: ~a! that the stability boundaries of Eq.~1! can
be obtained by analytically solving its linearized equatio
and ~b! that the truncation of certain generalized Fourier
ries at lowest order provides an approximate but useful
lution of this linearized equation. Also, we test numerica
the invariance condition~3! by considerings„t;a(m,T),T…
@cf. Eqs.~2! and~4!# instead of cn@4K(m)t/T;m#. In Sec. IV
we numerically investigate the bifurcation behavior at t
stability boundaries in the parameter planesm-F and a-F,
and lastly, Sec. V concludes the paper.

II. ORDER-CHAOS THRESHOLD

As is well known, MA provides a mathematical criterio
to determine approximately the chaotic threshold of a w
variety of dynamical systems. Specifically, MA is concern



iv
io

s

te

en
ca
ic

th

-
te

-
are

ider

e

s

-

s
nt

pre-
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with the occurrence of homoclinic~and heteroclinic! chaos
in such systems. Since MA is a first-order perturbat
method, we will assume in this section that the dissipat
and parametric excitation terms areweakperturbations of the
underlying integrable system, i.e.,h!1, hF!1. MA is now
considered a standard method, so that we refer the intere
reader to the pertinent literature@9–13#.

The application of MA to Eq.~1! implies calculating the
Melnikov function,

M ~ t0!52hE
2`

`

$11Fp~ t1t0 ;T!%ẋ0
2dt, ~9!

associated with either of the homoclinic orbits of the in
grable two-well Duffing oscillator:

x0~ t !56& sech~ t !,

ẋ0~ t !57& sech~ t !tanh~ t !. ~10!

The Melnikov function~9! measures the distance betwe
the perturbed stable and unstable manifolds in the Poin´
section att0 . If M (t0) has a simple zero, then a homoclin
bifurcation occurs, signifying thepossibility of chaotic be-
havior. For the sake of clarity, we shall treat separately
effects of the two types of pulse function.

A. Case of the JEF cn

Using the Fourier expansion of cn@3#, it is straightfor-
ward to recast Eq. ~9! with p(t1t0 ;T)[cn@4K(t
1t0)/T;m# into the form

M ~ t0!522hE
2`

`

sech2~t!tanh2~t!dt

2
2phF

AmK
(
n50

`

sech@~n11/2!pK8/K#

3cos@~n11/2!4pt0 /T#

3E
2`

`

sech2~t!tanh2~t!cos@~n11/2!4pt/T#dt,

~11!

with K8(m)[K(12m) the complementary complete inte
gral of the first kind. The resulting integrals can be evalua
with the aid of standard integral tables@14#. Finally, one
obtains

M ~ t0!52
8

3
h22p2hF (

n50

`

an~m!bn~T!

3cos@~n11/2!4pt0 /T#, ~12!

with

an~m![
1

AmK
sech@~n11/2!pK8/K#,
e
n

ted

-

re

e

d

bn~T![$~2n11!2p/3T2@~2n11!2p/T#3/6%

3csch@~2n11!p2/T#. ~13!

From Eqs.~12! and~13! one sees that a homoclinic bifurca
tion is guaranteed for trajectories whose initial conditions
sufficiently close to the separatrix~10! if

1

F
,U~m,T!, ~14!

where the chaotic threshold function is

U~m,T![
3p2

4 U(
n50

`

an~m!bn~T!U. ~15!

In order to analyze the behavior in parameter space, cons
first the limiting case of a harmonic excitation (m50). From
Eq. ~13! one straightforwardly obtains

an~m50!5 H1/p, n50
0, n.0. ~16!

Therefore,

U~m50,T!5
p2

2 U1T2
2p2

T3 UcschS p2

T D . ~17!

A plot of U(m50,T) is given in Fig. 2. One observes th
following features for increasing values ofT. First, U(m
50,T→0)50, i.e., at this limiting value, chaotic motion i
not possible since the average ofF cos(2pt/T) over any finite
time interval tends to 0 asT→0. Second, the threshold func
tion ~17! presents amaximumat T5Tmax[2.51... of U(m
50,T5Tmax).0.1644, and aminimum at T5Tmin(m50)
[&p of U(m50,T5Tmin)50. Therefore, if one consider
fixing the parameterh so as to lie at a regular regime at poi
R in Fig. 2, then asT is increased, a window of~at least
transient! chaos will appear for 0,T,Tmin(m50). This is
indeed observed in numerical experiments as can be ap
ciated in the sequence shown in Fig. 3. Note that forT suf-

FIG. 2. Chaotic threshold functionU(m50,T) for the trigono-
metric limiting case (m50) vs period excitationT @cf. Eq. ~17!#.
U(m,T) is a dimensionless quantity andT is a dimensionless vari-
able.
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FIG. 3. Velocity time series. The parameters areh50.005,F5100, m50 ~harmonic excitation!. ~a! T51, ~b! T51.5, ~c! T5Tmax

[2.51...,~d! T53.5, ~e! T5Tmin(m50)[&p, ~f! T56.5. The quantityx is in arbitrary units andt is a dimensionless variable.
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ficiently larger thanTmin(m50), chaotic behavior is again
observed, as expected@cf. Figs. 2 and 3~f!#. Third, for T
.Tmin(m50) the chaotic threshold function is an increasi
function that asymptotically tends to12 as T→`. In other
words, for F<2 chaotic behavior is not possible for an
periodT ~see Fig. 2!. It is worth mentioning that this result i
coherent with that arising from the stability boundary of t
solutions (x561, ẋ50) in theT-F plane, namely, that suc
stability boundary presents its single minimum atT
5Tmin(m50)/2 for which F52 ~cf. Ref. @8#!. Fourth, atT
5Tmin(m50), chaotic motion is not expected for any excit
tion amplitudeF, which is a consequence of the 1:1 param
ric resonance of the underlying Hamiltonian system. Inde
asTint(m)[2A22mK(m) are the periods of the interior or
bits associated with the integrable (h50) two-well Duffing
equation@cf. Eq. ~1!#, one findsTmin(m50)5Tint(m50).

Consider now the general casemÞ0. From Eq.~15! one
readily obtains

U~m,T→`!5 1
2 ,

U~m,T→0!50. ~18!

Figure 4 shows that the qualitative form of the functi
U(m5const,T) remains the same as that corresponding
the limiting harmonic case. There always exists aTmin
-
d,

o

5Tmin(m) such that U@m,T5Tmin(m)#50, and a Tmax
[2.51...,;m @cf. Eqs.~13! and ~15!#. It is worth noting that
Tmin(m) increases from its value atm50 asm→1, although
the deviation fromTmin(m50) is only noticiable for values of
m close to 1~i.e., when the pulses are fairly narrow!. This
can be appreciated in Fig. 5, where we also plotTint(m) for
comparison. While there is a notable deviation afterm
.0.3, both functions show a monotonously increasing

FIG. 4. Chaotic threshold functionsU(m,T) vs periodT @cf. Eq.
~15!# corresponding to different wave forms~values ofm! of the
excitation. From top to bottom:m50.2, 0.8, and 1 – 1026, respec-
tively. U(m,T) is a dimensionless quantity andT is a dimension-
less variable.
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havior, which tends tò asm→1. Thus, one is tempted t
consider the existence of the minima atTmin(m) as an effect
of the parametric resonances of the underlying Hamilton
system. The peak valueU(m,T5Tmax) diminishes from its
value atm50 as m→1, which is coherent with the limit
U(m→1,T)50, i.e., in this limit chaotic behavior is not ex
pected. Now, two remarks are in order. First, with a fixedT
aroundTmax[2.51..., the range of values of the pulse amp
tude for which~at least transient! chaotic motion is expected
to be observeddecreasesas m is increased. Second, with
fixed F.1/U(m,Tmax) @cf. Eq. ~14!#, the range of values o
the period@included in the interval„0,Tmin(m)…# for which ~at
least transient! chaotic behavior is expected to be detec
increasesasm is increased.

We now study the chaotic threshold as a function
solely the pulse shape parameterm, holding the period con-
stant. Typical plots of the functionU(m,T5const) are
shown in Figs. 6 and 7. In general, forT sufficiently near a
givenTmin(m), as in the instance given in Fig. 7, the behav
of the threshold function vsm is qualitatively different from
that occurring for values ofT sufficiently far from such
Tmin(m), as in the example depicted in Fig. 6. Figure 7~b!
reveals that the dynamics can exhibitextreme sensitivityto
changes in the pulse wave form, as indeed is illustrated
the sequence of displacement time series displayed in Fi
Note that the chaotic series in Fig. 8~b! corresponds to the
value m5mmax at which U@m,T5Tmin(m50)# presents a
maximum@Fig. 7~b!# i.e., to the most favorable situation fo
the onset of chaos.

B. Case of a rectangular-pulse function

Using the Fourier expansion ofs(t;a,T) @14#, and after
evaluating the resulting integrals, we can recast Eq.~9! with
p(t1t0 ;T)[s(t1t0 ;a,T) into the form,

M ~ t0!52
8

3
h28hF (

n50

`

cn~a,T!bn~T!

3cos@~n11/2!4pt0 /T#, ~19!

FIG. 5. Plots of functionsTint(m)[2A22mK(m) ~solid line!
and Tmin(m) ~dots! @U„m,Tmin(m)…50, cf. Eq. ~15!#. Tint(m) and
Tmin(m) are both dimensionless quantities, andm is a dimensionless
variable.
n

-

d

f

r
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8.

with

cn~a,T![
1

2n11
sin@~n11/2!2pa/T#, ~20!

and bn(T) given by Eq.~13!. From Eqs.~19! and ~20! the
necessary condition for the onset of chaos is written

1

F
,U8~a,T!, ~21!

where the new chaotic threshold function is

U8~a,T![3U(
n50

`

cn~a,T!bn~T!U. ~22!

In order to test the invariance condition~3!, we substitute
a(m,T) @cf. Eq. ~4!# into Eq.~20!. Thus, Eq.~22! reduces to
the form

U8~m,T![3U(
n50

`

cn~m!bn~T!U, ~23!

with

FIG. 6. Chaotic threshold functionU(m,T) ~dimensionless
quantity! vs elliptic parameterm ~dimensionless variable! @cf. Eq.
~15!# associated with the periodsT51 ~a! andT510 ~b!.



e

he

o
1

.
ls
fo
pp
e

tes

n

PRE 59 6563BIFURCATIONS AND CHAOS IN A PARAMETRICALLY . . .
cn~m![
1

2n11
sinF ~n11/2!p arccosA12m

AmK~m!
G . ~24!

Figure 9 shows that the form of the functionU8(m
5const,T) is the same as that ofU(m5const,T) ~cf. Fig. 4!,
i.e., there always exists aTmin8 5Tmin8 (m) such that
U8„m;Tmin8 (m)…50, and aTmax8 5Tmax[2.51...,;m @cf. Eqs.
~13! and ~23!#. Also, Tmin8 (m) increases from its value atm
50 asm→1, asTmin(m) does. Figure 10 depicts the relativ
deviation@Tmin8 (m)2Tmin(m)#/Tmin(m) showing that it is only
noticiable for very narrow pulses~i.e., for values ofm very
close to 1!. This is in agreement with the discussion at t
end of the Sec. I: one sees that the invariance condition~3!
works better for small than for large periods~cf. Figs. 5 and
10!. The functionU8(m,T5const) is very similar in shape t
U(m,T5const), as can be appreciated in Fig. 11. Figure
shows the relative deviationuU8(m,T5const)2U(m,T
5const)u/U(m,T5const) vsm for two values of the period
For a fixed period, the deviation drops sharply as the pu
narrow. Again, the deviation is greater for large than
small periods, as predicted. Nonetheless, the range of a
cability of condition~3! in the period domain appears to b
fairly broad.

FIG. 7. Chaotic threshold functionU(m,T) vs elliptic parameter
m @cf. Eq. ~15!# for the periodT5Tmin(m50)[&p ~at which cha-
otic behavior is not possible for a trigonometric excitation! ~a!, and
detail of the maximum region~b!. U(m,T) is a dimensionless
quantity andm is a dimensionless variable.
2

es
r
li-

III. STABILITY BOUNDARIES FOR
STATIONARY SOLUTIONS

In this section we assume that the driving periodT is
sufficiently small for the invariance condition~3! to be ap-
proximately correct. We can then obtain theoretical estima
of the stability boundaries for the solutions (x561, ẋ50),
which would be valid for any symmetric-pulse functio

FIG. 8. Displacement time series. The parameters areh
50.005, F5170, T5Tmin(m50)[&p, ~a! m50.9998, ~b! m
5mmax.0.999 942 5, and~c! m50.999 99. The quantityx is in ar-
bitrary units andt is a dimensionless variable.

FIG. 9. Chaotic threshold functionsU8(m,T) ~dimensionless
quantity! vs periodT ~dimensionless variable! @cf. Eq. ~23!# corre-
sponding to distinct shapes~values ofm! of the pulses. From top to
bottom: m50.2, 0.8 and 1 – 1026, respectively.
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p(t;T). In order to facilitate the comparison with the prev
ously studied harmonic case@8#, we shall calculate by using
cnoidal pulses. Thus, following Ref.@8# we rewrite Eq.~1!
with p(t;T)[cn(vt;m) as

V2
d2x

dt2
1q@112e cn~2t;m!#

dx

dt
2x1x350, ~25!

using the transformations

FIG. 10. Relative deviation @Tmin8 (m)2Tmin(m)]/
Tmin(m) @U„m,Tmin(m)…50,U8„m,Tmin8 (m)…50, cf. Eqs. ~15! and
~23!, respectively# vs m ~dimensionless variable!. The last two plot-
ted points correspond to the valuesm51 – 1026 and m
51 – 10215, respectively. See Fig. 5 for comparison.

FIG. 11. Chaotic threshold functionU8(m,T) ~dimensionless
quantity! vs elliptic parameterm ~dimensionless variable! @cf. Eq.
~23!# associated with the periodsT51 ~a! andT510 ~b!. Compare
with Fig. 6.
t5
1

2
vt, V5

v

2
, q5hV, e5

F

2
. ~26!

The linearized equation for a perturbationj around the pair
of stationary solutions (x561, ẋ50) reads

V2
d2j

dt2
1q@112e cn~2t;m!#

dj

dt
12j50. ~27!

We assume that the boundary of stability may be determi
from the existence of a periodic solution forj. In Ref.@8# the
classical Floquet theorem was used to deal with the res
tive problem corresponding to the limiting harmonic ca
(m50). Here we use an elliptic generalization of this pr
cedure, which is based on the existence of generalized F
rier series@15# and on an elliptic harmonic balance metho
@16#. Thus we may assume the existence of

j5
A0

2
1 (

n50

`

@An cos~nw!1Bn sin~nw!#, ~28!

wherew[am(t;m) is the JEF of parameterm. Since we are
here solely interested in aqualitativeestimate of the stability
boundaries in them-F andT-F parameter planes, we sha
limit our treatment to the lowest-order approximation. Th
we truncate the series~28! at n51 and insert the resulting
expression into Eq.~27!, obtaining

$V2@~2m21!cn~t!22mcn3~t!#2qsn~t!dn~t!

22eq sn~t!dn~t!cn~2t!12 cn~t!%A1

1$V2@2m sn3~t!2~11m!sn~t!#1q cn~t!dn~t!

12eq cn~t!dn~t!cn~2t!12 sn~t!%B11A050, ~29!

where we have used sinw[sn(t;m), cosw[cn(t;m)
@sn(t;m) and dn(t;m) are JEFs of parameterm# and the
notationpq(t)[pq(t;m). From the generalized Fourier se
ries @15# for the above products of JEFs~see the Appendix!,
if the expansions are limited to the first harmonic, instead
Eq. ~29!, one has

FIG. 12. Relative deviation uU8(m,T5const)2U(m,T
5const)u/U(m,T5const) vs m ~dimensionless variable! for T51
~bottom curve! andT510.
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A012eqa08~m!B11H F ~22V2!1
m

2
V GA11q@a1~m!

12ea18~m!#B1J cosw1H F ~22V2!1
m

2
V2GB1

2q@b1~m!12eb18~m!#A1J sinw

1~higher harmonics!50, ~30!

whereb1(m), b18(m), a1(m), a08(m), anda18(m) are given
in the Appendix by Eqs.~A14!–~A18!, respectively. Setting
the independent term and the coefficients of cosw and sinw
to zero, respectively, one gets the equations forA0 , A1 , and
B1 . The existence of a nontrivial solution requires the det
minant of the respective coefficient matrix to vanish, i.e.,

U 22~12m/2!V2

2q@b1~m!12eb18~m!#

q@a1~m!12ea18~m!#

22~12m/2!V2 U50,

~31!

which gives@cf. Eq. ~26!#

ec~m,T,h!5
a1~m!

2 S 12A12
4a2~m,T,h!

a1
2~m!

D , ~32!

where

a1~m![
a1~m!b18~m!1a18~m!b1~m!

2a18~m!b18~m!
, ~33!

a2~m,t,h!

[
a1~m!b1~m!1@T/K~m!1~m22!K~m!/T#2/h2

4a18~m!b18~m!
.

~34!

Now we make the following remarks. First, for a harmon
excitation (m50), one recovers

ec~m50,T,h!5
1

h
Ah21S 2T

p
2

p

T D 2

, ~35!

which coincides, as expected, with the result reported in R
@8# for the lowest-order approximation. Second, the funct
ec(m5const,T,h5const) presents minima at periodsT
5A22mK(m)[Tmin(m)/2, which can be explained as
consequence of the parametric resonances~interior orbits! of
the underlying Hamiltonian system@cf. Eqs.~25! and ~26!#.
Figure 13 shows a comparison between the stability bou
ary obtained by numerical calculation and first-order pert
bation @Eq. ~32!# for h50.2, T5Tmin(m50)[&p. For val-
ues of the shape parameterm close to 0, Eq.~32! provides an
early estimate. However, the large discrepancies appea
for m>0.7 indicate that higher-order approximations are
quired for narrow pulses. Nonetheless, the first-order
proximation qualitatively reproduces the overall form of t
stability boundary, in particular, the expected behaviorF
→` asm→1. The same considerations concerning the li
ited validity of estimate~32! can be extended to the stabilit
r-

f.
n

d-
-

ng
-
-

-

boundaries in theT-F parameter plane. Numerical simula
tions indeed show that the accuracy of the theoretical e
mates diminishes asm approaches 1. As an example, Fig
14~a! and 14~b! display comparisons between the stabil
boundary obtained by numerical calculation and first-or
perturbation, form50.1 andm50.5, respectively. In order
to test the invariance condition~3!, we numerically obtained
the stability boundaries corresponding to rectangular-pu
driving ~2! for the valuesa(m50.1) anda(m50.5) @accord-
ing to condition~4!#, the remaining parameters being he
constant. Figure 15 shows the comparison between such
bility boundaries and the respective analytical estima
@from Eq. ~32!#. Finally, comparison between Figs. 14 an
15 indicates the utility of condition~3! over the range of
periods considered.

IV. BIFURCATION BEHAVIOR AT THE STABILITY
BOUNDARIES

Consider first the system~1! subjected to cnoidal pulses
One sees that the stability boundary of the solutions (x5
61, ẋ50) in them-F parameter plane is an increasing m
notonous function as shown in Fig. 13. The qualitative fo
of this function remains the same ash andT are varied. The
bifurcation behavior is fairly rich along the boundary, i.e
the dynamics appears quite distinct as the parametersm and
F are varied to cross different segments of this bounda
This is illustrated by considering two particular types
pathways crossing the boundary: varying the shape par
eter m with fixed F, and vice versa. In all the numerica
simulations presented in this section we assumeh50.2. Fig-
ure 16 shows the global bifurcation diagram constructed
means of a Poincare´ map at F53.8 and T52.518 310 7.
Starting atm50, and taking the transient time as 1000 ex
tation periods after every increment ofDm50.01, we sample
50 excitation periods by picking up the firstx value of every
excitation cycle. The same initial conditions are set for ev
new m afterDm is added. Figure 16 shows that in the ran
0<m,0.31 the motion of the system is large-scale cro
well chaos for severalm values. Then the system undergo

FIG. 13. Stability boundary in them-F parameter plane~m and
F are both dimensionless variables! for h50.2, T5&p. The re-
sults from numerical simulation and from first-order perturbati
are shown and compared.
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an inverse interior crisis atm>0.31, limiting the chaotic dy-
namics to inside a smaller region, through the range 0
<m,0.41 where phase-locked chaos was detected. F
m50.41 to m51 the system’s overall behavior is invers
period doubling, which is interrupted for a small interval
m, @0.82, 0.84#. In this interval in turn inverse period
doubling cascades take place after an inverse boundary c
near the beginning of the interval. FormP]0.84,0.99@ , there
is the steady behavior of a period-2 attractor, which becom
unstable atm>0.99, jumping to the stable stationary solutio
(x51, ẋ50).

Figure 17 shows a similar bifurcation diagram~x vs F!
constructed through a Poincare´ map at m50.99, T
52.3271057, andF ranging from 1 to 10. In this case, th
stationary solution (x51, ẋ50) becomes unstable atF
.3.1 and jumps to a single-well period-2 attractor. Per
doubling begins atF.6.18 and, after phase-locked cha
appears atF.6.67, the motion becomes large-scale cro
well chaos fromF.7.03 ~to F510). One can see that ther
are very different features of the two routes described ab
crossing the stability boundary in them-F parameter plane
In particular, we would emphasize the great richness of
bifurcation behavior as the shape parameterm is varied.

FIG. 14. Stability boundaries in theT-F parameter plane for
cnoidal pulses andh50.2: ~a! for m50.1 and~b! for m50.5,
respectively. The results from numerical calculation and from fi
order perturbation are shown and compared.T and F are both
dimensionless variables.
1
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sis
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FIG. 15. Stability boundaries in theT-F parameter plane for a
rectangular-pulse function@cf. Eq. ~2!# and h50.2: ~a! for a(m
50.1) and~b! for a(m50.5), respectively@cf. Eq. ~4!#. The results
from numerical calculation and from first-order perturbation@cf. Eq.
~32!# are shown and compared.T and F are both dimensionless
variables.

FIG. 16. Bifurcation diagram for the variablex, with h50.2,
F53.8, T52.518 310 7, andm ~dimensionless variable! in the
range 0<m<1, corresponding to the system~1! subjected to cnoi-
dal pulses. The quantityx is in arbitrary units.
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Now we consider the system~1! subjected to rectangula
pulses given by Eq.~2!, in order to test the invariance con
dition ~3!. To this end, Fig. 18 shows the global bifurcatio
diagramx vs a constructed by means of a Poincare´ map at
T52.518 310 7 and F53.8. Starting at a(m50,T
52.518 310 7)@cf. Eq. ~4!#, and taking the transient time a
1000 excitation periods after every increment ofDa
[a(m,T52.518 310 7)2a(m10.01,T52.518 310 7), we
sample 50 excitation periods by picking up the firstx value
of every excitation cycle. The same initial conditions are
for every newa after Da is added. Correct comparison b
tween Figs. 16 and 18 must take into account thata is a
nonlinear function ofm @cf. Eq. ~4!#. Nevertheless, one ob
serves that the global bifurcation behavior is rather ana
gous.

V. CONCLUSION

In this paper we have studied the dynamics of a pa
metrically damped two-well Duffing oscillator subjected to
periodic string of symmetric pulses, modeled in two differe
forms: by the JEF cn and by a rectangular-pulse functi
We showed that the results remain the same, independe
of the specific shape of the pulses, as long as an invaria
condition concerning the impulse transmitted by the pulse
imposed. It was shown that, in general, the invariance c
dition works better for small than for large periods. The fo
lowing is a summary of the results.

~i! Analytical estimates of the chaotic threshold functi
were obtained for both types of pulses, and compared un
the invariance condition, by means of MA. It was demo
strated that there exist two windows of chaos@0,Tmin(m)
@and ]Tmin(m),`@, for any shape of~either of! the pulses, and
this was confirmed by numerical simulations. The impos
bility of chaotic motion at the periodsT5Tmin(m) was ex-
plained in terms of parametric resonances of the underly
Hamiltonian system. These results represent well-beha
dynamical properties of the studied system, in the sense
they are insensitive to damping and insensitive to the part
lar shape of the pulses.

FIG. 17. Bifurcation diagram for the variablex, with h50.2,
T52.327 105 7,m50.99, andF in the range 1<F<10 correspond-
ing to system~1! subjected to cnoidal pulses. The quantityx is in
arbitrary units andF is a dimensionless variable.
t

-

-

t
.
tly
ce
is
n-

er
-

i-

g
ed
at

u-

~ii ! The stability boundaries of the stationary solutio
(x561, ẋ50) were estimated, to lowest perturbative ord
by means of an elliptic harmonic balance method. Numer
calculations indicated that the theoretical curves for the
bility boundaries, in them-F andT-F planes, are reliable for
values ofm sufficiently close tom50, and that they remain
valid independently of the specific wave form of the puls

~iii ! The bifurcation behavior along the stability bounda
in the parameter planesm-F and a(m,T)-F @cf. Eq. ~4!#
were obtained numerically. It was especially rich in the ca
where only the shape parameter was varied, holding the
maining parameters fixed.

Finally, we expect that the transmitted impulse invarian
condition may be useful for all driven, nonlinear system
whose motions are bounded. Our current work is aimed
exploring this conjecture.
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APPENDIX: GENERALIZED FOURIER SERIES
IN WHICH JACOBIAN ELLIPTIC FUNCTIONS

ARE USED

In this appendix it will be shown how to find the expa
sions of a periodic functionf (t), with period 4K(m), in
terms of the periodic set of the so-calledelliptic harmonics
@16#,

cos0~t;m![1, cosn~t;m![cos~nw!,

sinn~t;m![sin~nw!, ~A1!

where w5am(t;m), m,1 and n51,2,... Therefore, one
looks for the Fourier coefficientsan ,bn of

FIG. 18. Bifurcation diagram for the variablex, with h50.2,
F53.8, T52.518 310 7, anda in the rangea(m50.999 999)<a
<a(m50) according to condition~4!, corresponding to system~1!
subjected to rectangular pulses given by Eq.~2!. The quantityx is in
arbitrary units anda is a dimensionless variable.
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f ~t!5
a0

2
1 (

n50

`

@an cos~nw!1bn sin~nw!#. ~A2!

They can be obtained by a standard~trigonometric! Fourier
expansion of the transformed functionf (w;m) in terms of
cos(nw) and sin(nw):

an~m!5
1

p E
0

2p

f ~w;m!cos~nw!dw, ~A3!

bn~m!5
1

p E
0

2p

f ~w;m!sin~nw!dw. ~A4!

However, instead of changing the functionf (t) into the form
f (w;m) @by using the inverse functiont5am21(w;m)#, the
current procedure uses a set of orthogonal functions defi
in the t variable@the set~A1!#. One, therefore, has

f ~t!5
a0

2
1 (

n50

`

@an cosn~t;m!1bn sinn~t;m!#, ~A5!

where, upon substituting expression~A1! and the formula
dw/dt5d@am(t;m)#/dt5dn(t;m) ~cf. Ref. @3#! into the
expressions~A3! and ~A4!, one has

an~m!5
1

p E
0

4K

f ~t!cosn~t;m!dn~t;m!dt, ~A6!

bn~m!5
1

p E
0

4K

f ~t!sinn~t;m!dn~t;m!dt. ~A7!

Thus, for the products of JEFs appearing in Eq.~29!, one
straightforwardly obtains

cn3~t;m!5 3
4 cn~t;m!1¯ , ~A8!

sn~t;m!dn~t;m!5b1~m!sn~t;m!1¯ , ~A9!

sn~t;m!dn~t;m!cn~2t;m!5b18~m!sn~t;m!1¯ ,
~A10!
-

ys
ed

sn3~t;m!5 3
4 sn~t;m!1¯ , ~A11!

cn~t;m!dn~t;m!5a1~m!cn~t;m!1¯ , ~A12!

cn~t;m!dn~t;m!cn~2t;m!5a08~m!1a18~m!cn~t;m!1¯ ,
~A13!

where, using Eqs.~A6! and ~A7!, the coefficients are given
by

b1~m!5
1

p E
0

4K

sn2~t;m!dn2~t;m!dt, ~A14!

b18~m!5
1

p E
0

4K

sn2~t;m!dn2~t;m!cn~2t;m!dt,

~A15!

a1~m!5
1

p E
0

4K

cn2~t;m!dn2~t;m!dt, ~A16!

a08~m!5
1

p E
0

4K

cn~t;m!dn2~t;m!cn~2t;m!dt,

~A17!

a18~m!5
1

p E
0

4K

cn2~t;m!dn2~t;m!cn~2t;m!dt.

~A18!

Finally, with the aid of standard tables@17#, b1(m) and
a1(m) can be written

b1~m!5
4

3pm
@~2m21!E~m!1~12m!K~m!#,

~A19!

a1~m!5
4

3pm
@~11m!E~m!2~12m!K~m!#,

~A20!

whereE(m) is the complete elliptic integral of the secon
kind.
ds

-
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